Project ID: #eems033

U.S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

Truck Cooperative Adaptive Cruise Control/Platooning Testing: Measuring Energy Savings and Aerodynamic Interactions

PI and Presenter: Xiao-Yun Lu Lawrence Berkeley National Laboratory

DOE VTO Annual Merit Review June 19, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ENERGY EFFICIENT MOBILITY SYSTEMS PROGRAM INVESTIGATES

MOBILITY ENERGY PRODUCTIVITY

Core Evaluation & Simulation Tools

HPC4Mobility & Big Transportation Data Analytics

OVERVIEW

Timeline

Project start date: Jan 1 2017Project end date: Jun 30 2019

– Percent complete: 50%

Budget

Total project funding: \$848K

○ 100% DOE/VTO

- Funding for FY 2017: \$493K

LBL: \$407KNREL: \$86K

Funding for FY 2018: \$355K

LBL: \$269KNREL: 86K

Barriers

 It is necessary to quantify fuel saving benefit for CACC truck operation at high speed for different scenarios

Partners

- Berkeley Lab (project lead)
- Transport Canada
- National Research Council (NRC) of Canada
- National Renewable Energy Laboratory (NREL)
- UC Berkeley

RELEVANCE AND OBJECTIVES

Challenges

-The energy impact of truck CACC and Platooning can be more accurately determined through physical experiments and should be quantified to highlight two key effects: changes due to aerodynamic drag and vehicle speed variations; it is also critical to perform physical experiments to validate modeling results

Objectives for FY 17

 Investigate truck CACC/Platooning impact on energy use at high speed due to aerodynamic drag reduction and speed changes for fundamental maneuvers

-Objectives for FY 18

- Investigate truck CACC/Platooning impact on energy use at a signalized intersection with Active Traffic Signal Control (ATSC)
- Objectives for FY 19 (go/no-go)
 - Demonstrate energy savings of a 3-Truck CACC/Platoon when driving along a freeway corridor with real-world traffic

APPROACH AND MILESTONES – FY17

 Relevance: moving people and goods more efficiently with reduced energy consumption for sustainable mobility in transportation with CAV technologies

	ruei Consump	tion Evaluation for Truck C SAMRT Mobil		•		al FI	eeway	op(ttu -	ri I	<i>I</i>					
Approaches	1	Months	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.Determine test plan	including scenarios	and schedules														
2. Prepare control cod	le for all test scenari	os for efficient tests														
3. Refine CACC contro	ol for performance in	mprovement														
4. Move 3 Volvo trucks	s with CACC to Tran	sport Canada Test Site														
5. Modify tractors with	extra sensors (NRC	Canada), boat tail etc.														
6. Conduct the test str	rictly following SAE	J1321 test procedures														
7. Conduct test data a	nalysis and writing p	papers														

TECHNICAL ACCOMPLISHMENTS – FY17

System preparations

Fuel tank mounting/removal & weighing

Trailer modifications

Air speed & pressure sensors

TECHNICAL ACCOMPLISHMENTS – FY17

- Testing truck CACC fuel consumption impact
 - -Vehicle mass: 29,500kg or 65,000lb
 - -Following at different constant speeds (50 mph and 65 mph)
 - -Following at different Time-Gap (or D-Gap: 4 m 87 m)
 - -2-truck CACC and 3-truck CACC
 - -For variety of maneuvers:
 - Single truck ACC
 - ocut-in between truck 1 & 2, and truck 2 & 3
 - Speed variation between 55mph ~ 65mph
 - Midsize SUV leading 2-truck & 3-truck CACC strings following
 - LCV: Single tractor with two fully loaded trailers

TECHNICAL ACCOMPLISHMENTS – FY17

Test Track & Scenarios:

4m CACC following

Speed variation with 18m D-Gap

Cut-in CACC string with 35m D-Gap

Transport Canada's Motor Vehicle Test Centre, Blainville, Québec

Long combination vehicle testing

Manually driven SUV leading 3-truck CACC with 56m separation & 12m between trucks

TECHNICAL ACCOMPLISHMENTS: Test Results – FY17

time gap Δt [s] 0.5 1.5 2.5 20 3-Truck Platoon (2016) Truck 2 has highest savings at short D-Gap 3-Truck Platoon (2017) Truck 3 savings decrease at short D-Gap 15 **Trailing** fuel savings, ∆F [%] (Truck 3) Middle (Truck 2) Lead Truck 1 has savings at short D-Gap 0 -5 10 20 30 40 50 60 80 90 100 vehicle separation distance [m]

TECHNICAL ACCOMPLISHMENTS: Test Results – FY17

measured [kg] 24 22+ 22

Fuel consumption [kg] estimated from CAN Bus fuel rate data

Fuel consumption: measured vs. estimated from CAN-Bus fuel rate

COLLABORATION WITH OTHER INSTITUTIONS – FY17

- Transport Canada provided about \$1M supporting the tests
- National Research Council of Canada (NRC Brian McAuliffe)
 managed the tests and conducted data collection and partial data
 analysis for fuel savings
- NREL (Michael Lammert) partially conducted data analysis for fuel savings
- LBNL team conducted CAN-Bus fuel rate data analysis
- LBNL team provided truck CACC test (CAN-Bus) data and some modeling parameters to ANL for Autonomie model calibration

REMAINING CHALLENGES AND BARRIERS

- To quantify fuel saving benefit for CACC truck operation at a signalized intersection through experiments
- To quantify fuel saving benefit for CACC truck operation along a freeway corridor with real-world traffic through experiments

APPROACH – FY18

- Concept of Operation: Simulation and hardware in-the-loop CACC truck operation at signalized intersection with integrated ATSC
 - Real-time (RT) simulation of a typical intersection traffic with
 ATSC for optimal green distribution according to traffic demands
 of all movements with CACC trucks embedded in simulation
 - Developing wireless communication (V2I & V2V) for system integration
 - CACC trucks driving with automatic longitudinal control
 - -The optimal reference speed trajectory (to minimize total delays and fuel consumption) will be used by the lead truck for control
 - -Able to repeat the tests for many times with similar traffic pattern

APPROACH: Concept of Operation – FY18

APPROACH – FY18

- 1. Update 3 Freightliner trucks for full speed range CACC
- 2. Model intersection traffic with typical field demands in Aimsun
- 3. Develop ATSC for flexible green times according to simulated traffic
- 4. Generate optimal reference speed profile for CACC trucks to:
 - reduce speed variations (including Stop&Go)
 - improve traffic throughput and reduce total delay of all movements
 - consider some drivetrain characteristics
- 5. Implement wireless communication among central control computer, Aimsun real-time simulation, traffic controller, and CACC trucks
- 6. Integrate the system
- 7. Evaluate of CACC truck fuel consumption using CAN-Bus fuel rate after multiple tests with similar traffic pattern

N.B. Any proposed future work is subject to change based on funding levels

MILESTONES – FY18

Fuel Consumption Evaluation for Optimal Truck	CAC	СО	pera	tion	at Si	gnal	ized	Inte	rsect	tion	- Scl	nedu	le			
SAMRT M	obility	/ CA	Vs Pi	llar												
Subtasks / Months	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. Update 3 Freightliner trucks for full speed range CACC																
2. Model PATH intersection traffic with typical field demand data in Aimsun																
3. Develop traffic signal control (ATSC) for flexible green distribution																
4. Develop optimal reference speed profile for CACC trucks																
5. Develop V2V & V2I between CACC trucks, traffic signal control, Real-timre Aimsun simulation																
6. Integrate the overall system																
7. Systematically evaluate of CACC truck fuel consumption using CAN-Bus fuel rate after multiple tests																

PROGRESSES – FY18

- 1. Partially updated one Freightliner truck
- 2. Started working on the computer systems
- 3. Developed a draft project plan and the Concept of Operation
- 4. Started modeling the intersection

APPROACH – FY19

- 1) Fix the automatic service brake control problem on 3 Volvo CACC trucks
- 2) Refine CACC control for performance improvement on graded road
- 3) Refine CACC control for performance with 3 different load levels: empty trailer, half loaded and fully loaded
- 4) Modify rental trailers with boat tails and side skirts
- 5) Select a freeway corridor with medium to high traffic and road grade
- 6) Hire and train professional truck drivers or incorporate with a freight movement truck company
- 7) Iteratively improve the system if necessary with driver feedback
- 8) Extensive test/operate with three CACC trucks and collect test data
- 9) Analyze CACC truck fuel consumption using CAN-Bus fuel rate data
- N.B. Any proposed future work is subject to change based on funding levels

SUMMARY

- CACC/Platoon fuel saving observed for wide range of Distances (D-Gaps)
- Other maneuvers' effects on fuel consumption are not significant
- Truck CACC showed significant energy savings for followers
- Leader also got fuel savings if D-Gap < 9~10 m
- Crossing point around 12m for truck 2 and truck 3:
 - D-Gap shorter than 12m truck 2 saves more
 - D-Gap longer than 12m truck 3 saves more
- Consistent with the results evaluated with CAN-Bus data
- Results applicable to alternative powertrain vehicles
- Data used for simulation and fuel consumption models for truck CACC
- Fuel consumption test for 3-truck CACC operation at a signalized intersection with real-time simulation in the loop (FY18)
- Fuel consumption test for 3-truck CACC operation along a freeway corridor with real-world traffic (FY19, go/no-go)

RESPONSES TO PREVIOUS YEAR REVIEWERS' COMMENTS

This project was not reviewed last year.

QUESTIONS?

BACKUP: ROAD CURVATURE AFFECT – FY17

 Road curvature effect on Average Fuel Savings vs. single truck run across all test scenarios for three trucks

	No yaw rate limit	Yaw rate < 0.573 [deg/s]	Yaw rate < 0.286 [deg/s]
Truck 1	5.0%	5.2%	5.1%
Truck 2	11.5%	11.9%	12.0%
Truck 3	11.0%	12.0%	12.1%

Micro-Simulation of Truck Platooning with Cooperative Adaptive Cruise Control: Model Development and a Case Study

H. Ramezani, S. E. Shladover, X. Y. Lu, California PATH Program, University of California, Berkeley

O. D. Altan, Federal Highway Administration

ABSTRACT

- <u>Objective</u>: Developed a micro-simulation model of heavy truck CACC when trucks share a freeway with manually driven passenger cars.
- Car following models: Developed for CACC, ACC, and CC
- Other behavioral models: Implemented lane changing, lane change cooperation, lane use restrictions, and switch from automated mode to manual mode
- <u>Case study</u>: Calibrated Aimsun model for a 15-mile corridor
 Studied effect of penetration rate on speed

MECHANISM OF AUTOMATIC VEHICLE FOLLOWING

CAR FOLLOWING MODEL

 $a_{target}(t) = Max(b_f, Min(a_F(t), a_m(t), a_G(t)))$

 b_f : Max braking rate

 $a_F(t)$: Acc. rate to reach free flow speed

 $a_G(t)$: Gipps deceleration component

 $a_m(t)$: Acc. rate for a given driving mode. For manual mode, the Newell

model is used. For automated modes the following models are used.

Car Following Model (Cont.)

For Cruise Control (CC) mode:

 $a_m(t+1) = 0.3907(v_{ref}(t) - v(t))$

 $v_{ref}(t)$: Reference speed

v(t): Speed of the subject vehicle

For Adaptive CC (ACC) mode:

 $a_m(t+1) = 0.0561 ig[d(t) - t_{des}^{AC} v(t) ig] + 0.3393 ig[v_{prec}(t) - v(t) ig] \ d(t)$: Distance gap

 t_{des}^{ACC} : Desired time gap, selected to be 2.2 sec

 $v_{nrec}(t)$: Speed of the preceding vehicle

For Cooperative ACC (CACC) mode:

 $a_m(t+1) = 0.0074 \left[d(t) - t_{des}^{CACC} v(t) \right] + 0.0805 \left[v_{prec}(t) - v(t) - t_{des}^{CACC} a(t) \right]$

 t_{des}^{CACC} :Desired time gap, evenly distributed between 1.2 sec and 1.5 sec

CASE STUDY: I-1710 NB

15-mile corridor with loop

Calibrated parameters

Parameter	Calibrated value	
Reaction time	1.3 sec	
Gap for manual trucks	2.4 sec	
Gap for manual cars	1.25 sec	
Theta in Gipps model	$0.2^* \tau_r$	
Max Acc. for cars	$2.5 m/s^2$	
Max Dec. for cars	$3 m/s^2$	
Min. speed difference to consider friction	10 m/s	

Effect of 100% PR on speed at detector locations:

Traffic dynamic at the most congested detector:

CONCLUDING REMARKS

- Developed a framework to simulate automated truck platoon, manual passenger cars and manual trucks
- Comparison of 0% penetration rate vs. 100%:
 For trucks: Speed and VMT increased by 20.5 % and 7.2%, respectively
 For cars: Speed increased by 5.8%; marginal effect on VMT

ACKNOWLEDGMENT

Work partially supported by the Federal Highway Administration (FHWA) Exploratory Advanced Research Program (Agreement No. DTFH61-13-R-00011), and partially supported by US Department of Energy through Laurence Berkeley National Laboratory, SMART Mobility Program (Agreement No. UCB# 13405)

